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ABSTRACT: There are many real structures where the loads are time-depend. Therefore we have to perform 
dynamic analysis to solve differential equations of motions, to meet transient response of model. Few effective 
methods for solving system of differential equations of motions are implemented in softwares which work on 
FEM (Finite element method) basis. Here is used direct Newmark step-by-step numerical time integration 
method, which is unconditionally stable. 
The objective of this work is to perform dynamic analysis of model in the software P AK (system of programs 
for structural analysis) [7] and compare those results with the results of the other FEM softwares. Agreements 
of the results would improve reliability of used software. Beside that, there are parameters and aspects of 
modeling which are considered here. All of this we have demonstrated and discussed on an example. 
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1 INTRODUCTION 

In the many practical examples, structures are subjected to time-varying excitation. Beside that, the 
inertial characteristics of structure have to be considered in analysis of motion. Therefore, we have to 
perform dynamic analysis to solve differential equations of motions, to compute transient response of 
model. 
Two different numerical methods, which are implemented in FEM (fmite element method) softwares, can 
be used for a transient response analysis: direct and modal. Direct method performs a numerical 
integration on the complete coupled equations of motions. The modal method utilizes mode shapes of the 
structure to reduce and uncouple equations of motions. Direct methods can be classified in two basic 
groups: implicit and explicit. Implicit methods are unconditionally stable, while stability of explicit 
methods depends of value of time-step increment [3]. Which method should be utilized depends upon 
structure and the nature ofloading. Newmark step-by-step numerical time integration is used in this paper 
for computing the behaviour of a structure on time-varying excitation. Eigenvalues which correspond to 
natural vibrations and mode shapes are also computed here. 
The methods, which are mentioned above, are approximate numerical methods, so the objective is to 
perform dynamic analysis ofstructure using PAK (system of programs for structural analysis) [7] and the 
other softwares which are based on finite element method. Agreements of the results would improve 
reliability of used softwares. We have also considered software's capabilities about dynamic analysis, 
setting up the type and parameters of analysis. All of this we have demonstrated and discussed on an 
example. 

2 THEORETICAL BACKGROUND 

Differential equations of motions 

Model which is considered in this paper doesn't include damping effects, so the differential equation of 
motions, in this case, derived from principal of virtual work, is [6]: 
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MU+KU=F(t) (1) 

where U , U and U are vector of nodal dis{,lacement, velocity and acceleration, respectively, M is mass 

matrix and K is linear stiffness matrix. F(tJ is a vector ofnodal external load. 

In general, mass matrix and stiffness matrix are defined as: 


M= I pHTHdV (2) 
V 

K= I BTCBdV (3)V 

where the p is density, H is matrix of interpolation functions, B is strain-displacement matrix and C is 
constitutive matrix. 
For computing the response of the structures with great number of degree of freedom, it is useful to take 
lumped mass matrix formulation instead consistent mass matrix. Lumped mass matrix formulation 
contains only diagonal matrix-elements. Using the lumped mass matrix formulation reduces the time 
required for analysis. 
Here are used standard and enhancement elements. Enhancement elements include incompatible 
displacements and thus the better results are obtained [10]. 

2.2 Integration of differential equations of motions 

The implicit integration methods are unconditiable stable and theoretically can be counted with arbitrary 
time step. Differential equation (I) is satisfied at the end oftime step, t+i'lt, so it is written in form: 

M'·"'U+K'·"'U= '·"'F (4) 

Newmmk step-by-step numerical method substitute ""'U and ""'U in above equation by 

""'0 = _I_[,.",U - 'u- 'Uf1t-('!-a)(f1t)2 'uJ (5)
a(f1t)2 2 

""'U=~(""'U-'U)-(~-l)'U-(~-I) i'lt'U (6)af1t a 2a 

to express unknown displacement ,.",U as a function ofknown displacement, velocity and acceleration in 
time t [6]. Requested system ofequations can be [mally written as 

(7) 

where matrix K and vector ••<Up are: 

K=K+aoM (8) 

'+"'P= '+AtF+M(a 'U+a 'U+a 'U) (9)• 1 , 

Coefficients a., a2 , a, are defined as 

I I I 
a. =a(i'lt)" a, = ai'lt' a, =2a -I (10) 

In this paper, Newmark parameters a and 0 have a values 

1 I
0=- a=- (11)

2' 4 

which correspond to accurate integration for linear change of acceleration [6]. 



2.3 Eigenvalues of the system 

For determining critical time in"lclllcnt which will be used in the dynamic anaiysis, it is necessary to 
calculate eigenvalues. Eigenvalues which correspond to natural vibrations are calculated from: 

(12) 

where aJ: = A., is i-th eigenvalue. Eigenvalues are ordered like aJ; < aJ~ < ... < aJ: . 

3 EXAMPLE 

3.1 Model description 

Transient analysis and calculation of eigenvalues are performed for cantilever beam loaded on the free 
end (Fig. 1) [4]. Time-varyng excitation is also shown in Fig. I. 
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Fig. 1: Cantilever beam loaded on the free end 

Model is generated using 2D four-nodes elements. Analysis is performed using FEM softwares: PAK, 
ADINA, COSMOS, ANSYS, NE Nastran and MSC Nastran. 

3.2 Eigenvalues and mode shapes 

In this example, numerical results for 10 eigenvalues are computed with v=0 and v=0.3 for consistent 
mass matrix and lumped matrix fomlUlation. Results that are obtained by PAK are shown in Tab. 1. 

Tab. 1: Numerical results for eigenvalues - PAK 

MOD Consistent Lumped 
v=0. v=0.3 v=0. v=0.3 

I 16.076 16.058 15.954 15.936 
2 99.356 98.602 94.534 93.875 
3 250.260 250.170 246.260 242.710 
4 274.310 269.860 249.740 249.840 
5 529.250 514.840 442.360 433.070 
6 756.960 756.}80 665.710 647.270 
7 859.940 828.590 743.080 741.580 
8 1259.800 1200.700 900.350 871.640 
9 1282.300 1284.600 1131.000 1091.700 
10 1727.400 1638.300 1218.100 1210.600 

Poisson's ratio, v, impacts to the value of natural frequencies. The results that are obtained by PAK 
perfectly agree with the results that are obtained by the other sofiwares, as it is shown in Tab. 2. 

Tab. 2: Numerical results for eigenvalues obtained by used softwares; lumped mass matrix, v=O 

MOD PAK COSMOS ANSYS NENASTRAN MSCNASTRAN 
I 15.954 15.954 15.954 15.954 15.954 
2 94.534 94.534 94.534 94.535 94.535 



MOD PAK COSMOS ANSYS NENASTRAN MSCNASTRAN 
3 246.260 246.262 246.260 246.262 246.262 
4 249.740 249.743 249.740 249.743 249.743 
5 442.360 442.362 442.360 442.362 44B62 
6 665.710 665.709 665.710 665.709 665.709 
7 743.080 743.080 743.080 743.080 743.080 
8 900.350 900.345 900.350 900.345 900.345 
9 1131.000 1131.043 1131.000 1131.043 1131.040 
10 1218.100 1218.119 1218.100 1218.119 1218.120 

Mode shapes which correspond to the eigenvalues shown Tab. 2 are shown in Fig. 2: 

Fig. 2: Mode shapes ofmodel with lumped mass matrix formulation and v=O, PAK 

The results that are displayed above are obtained using enhancement elements [6]. Eigenvalues which are 
obtained using standard elements by PAK and ADINA are identical, Tab. 3. 

Tab. 3: Eigenvalues for the model which consists ofstandard elements - PAK 

MOD Consistent Lumped 
v=O. v=0.3 v=0. v=0.3 

1 19.650 19.510 19.502 19.364 
2 120.070 118.150 114.370 112.640 
3 250.260 250.230 249.740 249.650 
4 326.200 317.300 294.290 287.230 
5 616.960 592.230 521.660 504.230 
6 756.960 757.020 743.080 736.510 
7 982.590 933.160 775.390 748.750 
8 1282.300 1279.400 1037.800 988.460 
9 1416.100 1337.600 1218.100 1206.300 
10 1838.900 1783.200 1295.800 1235.900 



Comparing the results shown in Tab. 1 and Tab. 3, it can be noticed that standard elements (without 
enhancement) don't give correct results. 

3.3 Transient response of cantilever beam 

Transient response of the cantilever beam was analyzed in 50 time steps (increments) where the size of 
time step is 8t = 0.006s. Using Newmark step-by step numerical integration method with coefficients 
a=0.25, 0=0.5 (11), and enhancement elements, we have got good agreement of results for both matrix 
formulations, Fig. 3,4. 
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Fig. 3: Displacement in the loaded node, v=(); Consistent mass matrix fonnulation 
1. 
15 

13" 
12 

~11 
E 10
So 9 
1:.. -+-PAK-Ux 
E -··ANSYS-Ux..... - ... -. MSC Nastran - Ux 
.!! 
Q. --PAK-Uy · - ... ANSYS· Uy3 . 
~ - ••. MSC Nastran - U 

·1 o. 
·2 
-3 

Time[s] 

Fig. 4: Displacement in the loaded node, v=(); Lumped mass matrix fonnulation 

It can be noticed that the curve which corresponds to results obtained by P AK is just between ANSYS 

and MSC Nastran curves. 

COSMOS performs only modal superposition method and does not support direct integration method. 

Results obtained by COSMOS and PAK are shown in Fig. 5. 
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Fig. 5: Displacement in the loaded node; COSMOS and PAK 

Even two softwares are based on different methodologies, there is very good agreement. 



We have also compared the results obtained using standard elements in P AK and ADINA. The results are 
identical, Fig. 6. 
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Fig. 6: Standard elements ADINA and PAK Fig. 7: Enhancement and standard elements PAK 

Comparing the standard and enhancement elements in PAK, Fig. 7, improves the fact that the standard 
element has a greater stiffness. Maximal displacement is almost doubly less in relation to results with 
enhancement elements while the amplitude of vibrations is significantly smaller. 

4 CONCLUSION 

Developing of FE methods have afforded the efficient solving of real dynamic problems. Transient 
response analysis is the most general method for computing forced dynamic response. Modal transient 
response is an alternate approach to computing the transient response of structure, but it is approximation 
because it uses only n natural frequencies. Calculating the eigenvalues is used for determining the size of 
time increment, which would be used in dynamic analysis. 
Direct integration method, which is implemented in software PAK, provides the reliable results for the 
models with enhancement element (field of incompatible displacement is added), but not for the standard 
elements. Example improves the fact that standard elements behave like that stiffuess is greater. Excellent 
agreement ofresults is shown in calculation ofeigenvalues (natural frequencies). 
At least, according to the shown results in this paper, it should be realized that numerical methods for 
computing dynamic response, implemented in the FE softwares, provide acceptable agreements ofresults. 
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